

Course Specifications

Institution: Academic Department : Programme : Course : Course Coordinator : Programme Coordinator : Dr.Gehan Laaemary. Course Specification Approved Date :

Majmaah University. **Department of chemistry Bachelor degree of chemistry Quantum Chemistry (1) Ibtehag ELhassan** 28/12 / 1436 H

This form compatible with NCAAA 2013 Edition

A. Course Identification and General Information

1 - Course title : Quantum	Course Code: Che	m 222	
Chemistry (1)			
2. Credit hours : 2			
3 - Program(s) in which the course is c	offered: Chemistry		
4 – Course Language : Arabic			
5 - Name of faculty member responsib	le for the course: Ibteh	ag ELhassan	
6 - Level/year at which this course is o	offered : forth Level		
7 - Pre-requisites for this course (if any	y):		
General chemistry			
8 - Co-requisites for this course (if any) :			
9 - Location if not on main campus : (faculty of education Zulfi)			
10 - Mode of Instruction (mark all that apply)			
A - Traditional classroom	\checkmark What percentage?	30 %	
B - Blended (traditional and online)	What percentage?	0 %	
D - e-learning	What percentage?	70 %	
E – Correspondence	What percentage?	0 %	
F - Other	What percentage?	0 %	
Comments :			

B Objectives

What is the main purpose for this course?

Definition for students the most important theories in the twentieth century, a theory of quantum based on the probability principle. This theory led to the quantization of energy and momentum and tied the wave movement and particle , A description for movement of fine particles to prepare for the study of the movement of particles and molecules

Briefly describe any plans for developing and improving the course that are being implemented :

The use of interactive whiteboard teaching instead of the chalkboard. use of the Web in modern additions to the course

C. Course Description 1. Topics to be Covered

List of Topics	No. of Weeks	Contact Hours
Introduction to failure of classical mechanics and Electromagnetic theory to explanation of some physical and chemical phenomena (Photoelectric effect)	1	2
the initial principle to quantum theory	1	2
Principle of quantization of angular momentum	1	2
Planck's constant and his physical interpretation as a representative to quantum	1	2
Principle of quantization Wilson , A free particle in one dimension	1	2
dual property of the particle and the wave, Wavelength of Dbrolli	1	2
The Uncertainty Principle	1	2
Wave function associated with the movement of the particle	1	2
3 factors influence in quantum mechanic	1	2
Self Wave function	1	2
Average value, Linear combination of self functions	1	2
Condition of orthogonality, The consistency condition of functions	1	2
Independent Schrodinger Equation and time- dependen	1	2
a free particle in one dimension	1	2
Simple harmonic motion, movement of particle in a peaceful effor	1	2
particle in three dimensions	1	2

2. Course components (total contact hours and credits per semester):

	Lecture	Tutorial	Laboratory	Practical	Other:	Total
Contact Hours	30					30
Credit	30					30

3. Additional private study/learning hours expected for students per week.

2

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods	
1.0	Knowledge			
1.1	Study the course of quantum chemistry (1) by using methods for resolving chemical systems atomic and molecular	lecture discussion,	Oral tests at the beginning of	
1.2	Students gain more information about the old quantum theory and the emergence of modern quantum theory of waves through the material	mutual dialogue	each lecture, Written tests, final examination	
2.0	Cognitive Skills			
2.1	Application of The Chemical Operation To Link between The Theoretical and Workable Material	problems, Laboratory study Open	Continuous questions- duties - practical test	

جامعة المجمعة

	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods
		discussions	
3.0	Interpersonal Skills & Responsibility	•	
3.1 3.2 3.3	Dealing with team spirit in experiments Creating constructive competitive spirit Encourage communication between students	Working in groups within the lab Collective seminars	Oral questions, Correct experimental results
4.0	Communication, Information Technology, Nun	nerical	<u>.</u>
4.1	Development of communication skills	Proplems	Oral and
4.2	Development of numerical skills	research, study	written
4.3	Use chemical Internet sites and doing some calculation	discussion	exercises Follow-up practical books,
5.0	Psychomotor		
5.1			

5. Schedule of Assessment Tasks for Students During the Semester:

	Assessment task	Week Due	Proportion of Total Assessment
1	Questions and exercises	4-5	10%
2	First Theoretical midterm exam	6	15%
3	Second Theoretical midterm exam	8	15%
4	Final Theoretical exam	Last week	60%
5	Questions and exercises	4-5	10%

D. Student Academic Counseling and Support

Two hours of weekly academic guidance

د ام ی ۵ المجمعة

E. Learning Resources

1. List Required Textbooks :

Quantum chemistry, Rashed Abdul -Aziz Al-Mubarak

2. List Essential References Materials :

• Foundations of physical chemistry, Adel Ahmed Jrare

. The principles of quantum chemistry, D / Salem Mohammed Khalil

3. List Recommended Textbooks and Reference Material : Introduction to Quantum Chemistry , D / Abdel Moneim al aaser

4. List Electronic Materials :

- .Wikipedia
- •

5. Other learning material :

• Power point - CD show

F. Facilities Required

1. Accommodation

- Prepared Classroom with Interactive whiteboard
- 40 chair.

2. Computing resources

- Laptop special for Professor only
- •

3. Other resources

•

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching:

- Meeting with the students academic excellence and the stumble
- Identification of evaluation for the course form students

2 Other Strategies for Evaluation of Teaching by the Program/Department Instructor :

• Benefit from the expertise of the members of the section

د ام ی ف المدمعة

- Identify assessment for teachers
- Report of the expert from College matchups
- **3** Processes for Improvement of Teaching :
 - Courses for Faculty members
 - Workshop to improve methods of evaluation
 - •
- 4. Processes for Verifying Standards of Student Achievement
 - The patch is checked by faculty member

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement :

- discussion the members section regularly to improve the course
- feedback processes for course quality

Course Specification Approved Department Official Meeting No (3) Date 28 / 12 / 1436 *H*

Course's Coordinator

Department Head

Name :	
Signature :	
Date :	/ / H

